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Figure: Schematic of the Delay Line Oscillator Model
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Figure: Schematic of the Inverter Model
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Figure: Schematic of the MOS Transistor Model
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Transmission Lines
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Figure: Schematic of one Segment of the Transmission Line Model
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Introduction to Port-Hamiltonian Systems

Hamiltonian System:

d

dt
x = J∇H(x), x(0) = x0

with

• solution x ∈ Rn of the system

• skew-symmetric matrix J ∈ Rn×n

• Hamiltonian H : Rn 7→ R
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Introduction to Port-Hamiltonian Systems

Adding Dissipation to the System:

d

dt
x = (J−R)∇H(x)−r(∇H(x)), x(0) = x0

with

• symmetric and positive semi-definite matrix R ∈ Rn×n

• nonlinear accretive vector r : Rn 7→ Rn i.e. fulfilling
v⊤r(v) ≥ 0∀v

! Port-Hamiltonian Systems preserve essential physical
properties such as dissipative inequalities.
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Introduction to Port-Hamiltonian Systems

Coupling to the Environment:

d

dt
x = (J − R)∇H(x)− r(∇H(x))+B u, x(0) = x0

y= B⊤∇H(x)

with

• input u ∈ Rn of the system

• output y ∈ Rn of the system

• port-matrix B ∈ Rn×n
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Introduction to Port-Hamiltonian Systems

Generalized to PH-DAE:

d

dt
E x = (J − R) z(x)− r(z(x)) + B u, x(0) = x0

y = B⊤z(x)

with

• nonlinear mapping z of x

• a possibly singular matrix E ∈ Rn×n

fulfilling the compatibility condition E⊤z = ∇H
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Port-Hamiltonian System of Electrical networks

d

dt
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0 0 0 0
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Coupling of Port-Hamiltonian Systems
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Figure: Schematic of the Coupling of Port-Hamiltonian System Model

!
The overall system can be modelled as a port-Hamiltonian
system too, which preserves the properties of the
underlying subsystems.
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Simulation of the MOS Transistor

t

UG

2.5 iD

Figure: Simulated gate voltage UD and drain current iD for the MOS transistor with
RGD = 6Ω,RGS = 0.6Ω,RBD = RBS = 100MΩ,CGD = CGS = 0.3 nF,CBD =
0.1 nF,CBS = 3nF,Vth = ±2.15V
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Simulation of the CMOS Inverter
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Figure: Output and input voltage of the CMOS Inverter with Cinv = 1 nF,
Uop = 3.3 V.
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Simulation of the CMOS Ring Oscillator
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Figure: Output of the coupled inverters inside the CMOS Ring Oscillator
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Simulation of the Transmission Lines

Figure: Wave propogation inside the transmission line with
G = 1mm/Ω,R = 1mΩ/m,C = 1mF/m, L = 3mH/m
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Simulation of the Delay Line Oscillator
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Figure: Output simulation result of the Delay Line Oscillator.
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