

Identifying and Optimizing Parameter Domains

Chupei Lin Yan Aklog Simon Arnold Prof. Dr. Thomas Goetz

37th ECMI Modelling Week 23.–29.06.2024 Catania, Italy

▶ Introduction to the Problem

Given

■ A dataset by ZF containing 2001 datapoints (N) with 11 parameters each.

Information about the data

- Data was generated by Finite Element Simulations.
- Values of Parameters are standardized.
- Meaning of the parameters is unknown.
- Data is labeled into class 1 (feasible) and class 0 (non-feasible).

Task

■ Find a parameter domain such that the volume of the domain is maximized and that at least 95% of the points inside the domain are feasible. The domain should be as simple as possible.

▶ Statistical Analysis

Data

Data points are randomly distributed within a unit hypercube.

Idea

Use statistical learning tools to get a first impression.

	Support-Vector-Machine	K-Nearest-Neighbors	Random Forest
Acc.	95.25%	84.36%	100.00%
Prec.	96.0%	97.3%	100.00%
Character.	Hyperplane	Decision Boundary	Majority Vote

- \Rightarrow Datapoints are separable in the 11th dimension.
- \Rightarrow Monte Carlo Methods can be used to measure the volume of the domain in high-dimensional space.

➤ Definition of Our Optimization Problem

Definition

The optimization problem can be expressed in a functional form that is

$$\max_{\beta} |\Omega(\beta)| \tag{1}$$

s.t.
$$\frac{n_{f,\Omega}(\beta)}{n_{\Omega}(\beta)} \ge 0.95$$
 (2)

where Ω is the domain, n_{Ω} the number of datapoints in Ω and $n_{f,\Omega}$ the number of feasible datapoints in Ω .

Paramter Domains (Chupei, Aklog, Arnold) ECMI MW 2024 4 / 12

➤ Choice of Optimization Method

Sequential Least Squares Programming (SLSQP)	Differential Evolution (DE)	
Gradient-based Optimization	Population-based Stochastic Search	
Find local optima	Find global optima	
High efficiency for small problems	Robust to discontinuous objective	
providing accurate solutions	functions	
Struggle with problems where gradients are not available	Slower compared to gradient-based method	

Our Optimization Problem

- The objective function (1) may exhibit discontinuities.
- The constraint function (2) exhibits discontinuities.
- In the 11th-dimensional space, the count of variables is substantial.

≥ 2D (artificial) Problem

(a)
$$\max_{\beta} |\Omega| = (\beta_2 - \beta_1)(\beta_4 - \beta_3)$$

(b)
$$\max_{\beta} |\Omega| = \pi \beta_r^2$$

Paramter Domains (Chupei, Aklog, Arnold) ECMI MW 2024

≥ 2D (artificial) Problem

(c)
$$\max_{\beta} |\Omega| = ?$$

- Area of domain is difficult to calculate analytically for 2D → worse for 11D.
- Idea: Use Monte Carlo Integration to approximate area

$$|\Omega| \approx \frac{n_{\Omega}}{N}$$

Shape	$ \Omega $	n_{Ω}	$n_{f,\Omega}$
Rectangle	0.51	810	770
Circle	0.35	569	541
Line	0.468	935	889
Analytical	0.6	925	879

> 3D (artificial) Problem

3D Plot of the Dataset with Domain

3D Plot of Data Points with Domain

(d)
$$\max_{\beta} |\Omega| \approx \frac{n_{\Omega}}{N}$$

(e)
$$\max_{\beta} |\Omega| = \frac{4}{3}\pi\beta_r^3$$

> 3D (artificial) Problem

EUROPEAN CONSORTIUM FOR MATHEMATICS IN INDUSTRY

3D Plot of the Dataset with Domain

(f)
$$\max_{\beta} |\Omega| = (\beta_2 - \beta_1)(\beta_4 - \beta_3)(\beta_6 - \beta_5)$$

- Employing cutting planes captures more feasible points.
- Rotation: In high-dimensional space, using a rotated cuboid as the objective function may yield better results, but it requires more variables to account for the rotation angles.

Shape	$ \Omega $	n_{Ω}	$n_{f,\Omega}$
Rectangular Cuboid	0.42	725	689
Sphere	0.065	110	105
Plane	0.374	748	711

▶ 11D Problem (739 "Feasible" Points)

Methods Comparison

	HyperPlane	HyperRectangle	HyperSphere	SVM
Domain Volume	36.33%	13.08%	0.03%	34.98%
Feasibility Rate	95.1%	95.0%	100.0%	96.0%
# of Points In	727	260	1	700
the Domain				

High-Dimensional Space Characteristics

- The Volume of an n-dimensional hypersphere decreases exponentially as n increases, assuming the radius remains constant.
 - ⇒ The Volume contained within the largest hypersphere inside an 11th dimensional unit hypercube is only 0.092%.

➤ Summary and Outlook

- The Monte Carlo Method is an effective way to approximate the Volume of the domain in high-dimensional space for randomly distributed datasets.
- Differential Evolution can be used to find global optimizations for discontinuous and complex problems.
- Employing a hyperplane for a well-separated dataset can yield the optimal result in our problem.

Outlook

- Using more hyperplanes may generate a larger domain while not violating the constraints.
- Other simple shapes could be employed.
- Allowing the sphere to extend beyond the hypercube may yield better results, but with a larger radius.

Paramter Domains (Chupei, Aklog, Arnold) ECMI MW 2024 11 / 12

