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Introduction to the Problem

Given
A dataset by ZF containing 2001 datapoints (N) with 11 parameters each.

Information about the data
Data was generated by Finite Element Simulations.
Values of Parameters are standardized.
Meaning of the parameters is unknown.
Data is labeled into class 1 (feasible) and class 0 (non-feasible).

Task
Find a parameter domain such that the volume of the domain is maximized
and that at least 95% of the points inside the domain are feasible. The
domain should be as simple as possible.
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Statistical Analysis

Data
Data points are randomly distributed within a unit hypercube.

Idea
Use statistical learning tools to get a first impression.

Support-Vector-Machine K-Nearest-Neighbors Random Forest
Acc. 95.25% 84.36% 100.00%
Prec. 96.0% 97.3% 100.00%

Character. Hyperplane Decision Boundary Majority Vote
⇒ Datapoints are separable in the 11th dimension.
⇒Monte Carlo Methods can be used to measure the volume of the domain

in high-dimensional space.
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Definition of Our Optimization Problem

Definition
The optimization problem can be expressed in a functional form that is

max
β

|Ω(β)| (1)

s.t. nf ,Ω(β)
nΩ(β)

≥ 0.95 (2)

where Ω is the domain, nΩ the number of datapoints in Ω and nf ,Ω the number of
feasible datapoints in Ω.
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Choice of Optimization Method

Sequential Least Squares Program-
ming (SLSQP)

Differential Evolution (DE)

Gradient-based Optimization Population-based Stochastic Search
Find local optima Find global optima
High efficiency for small problems
providing accurate solutions

Robust to discontinuous objective
functions

Struggle with problems where gradi-
ents are not available

Slower compared to gradient-based
method

Our Optimization Problem
The objective function (1) may exhibit discontinuities.
The constraint function (2) exhibits discontinuities.
In the 11th-dimensional space, the count of variables is substantial.
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2D (artificial) Problem
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(a) maxβ |Ω| = (β2 − β1)(β4 − β3)
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(b) maxβ |Ω| = πβ2
r
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2D (artificial) Problem
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(c) maxβ |Ω| = ?

Area of domain is difficult to
calculate analytically for 2D→
worse for 11D.
Idea: Use Monte Carlo Integration
to approximate area

|Ω| ≈ nΩ
N

Shape |Ω| nΩ nf ,Ω
Rectangle 0.51 810 770
Circle 0.35 569 541
Line 0.468 935 889

Analytical 0.6 925 879
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3D (artificial) Problem
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(d) maxβ |Ω| ≈ nΩ
N
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(e) maxβ |Ω| = 4
3πβ

3
r
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3D (artificial) Problem
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(f) maxβ |Ω| = (β2 − β1)(β4 − β3)(β6 − β5)

Employing cutting planes captures
more feasible points.
Rotation: In high-dimensional
space, using a rotated cuboid as the
objective function may yield better
results, but it requires more
variables to account for the rotation
angles.

Shape |Ω| nΩ nf ,Ω
Rectangular Cuboid 0.42 725 689

Sphere 0.065 110 105
Plane 0.374 748 711
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11D Problem (739 "Feasible" Points)

Methods Comparison
HyperPlane HyperRectangle HyperSphere SVM

Domain Volume 36.33% 13.08% 0.03% 34.98%
Feasibility Rate 95.1% 95.0% 100.0% 96.0%
# of Points In
the Domain

727 260 1 700

High-Dimensional Space Characteristics
The Volume of an n-dimensional hypersphere decreases exponentially as n
increases, assuming the radius remains constant.

⇒ The Volume contained within the largest hypersphere inside an
11th dimensional unit hypercube is only 0.092%.
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Summary and Outlook

The Monte Carlo Method is an effective way to approximate the Volume of
the domain in high-dimensional space for randomly distributed datasets.
Differential Evolution can be used to find global optimizations for
discontinuous and complex problems.
Employing a hyperplane for a well-separated dataset can yield the optimal
result in our problem.

Outlook
Using more hyperplanes may generate a larger domain while not
violating the constraints.
Other simple shapes could be employed.
Allowing the sphere to extend beyond the hypercube may yield better
results, but with a larger radius.
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