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Physical problem

Figure: Geothermal power station

ECMI Mattu Riccardo Marini Fabio June 28, 2024 3/18



Mathematical model: equations

Equations

∂T

∂t
+ u · ∇T − α∆T = 0 (convection-diffusion equation)

u = −k

µ
∇p Darcy Law

div(u) = 0 Conservation of mass
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Mathematical model: Boundary condition

Figure: ah
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Mathematical model: Temperature at t = 0

Figure: Plot of the temperature at the initial time
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Geothermal values

coefficient α ν µ

physical meaning diffusivity permeability viscosity
units m2 · s−1 m2 Pa · s−1

I scenario 1.43 · 10−7 10−14 8.9 · 10−4

II scenario 2.3 · 10−5 10−14 2.2 · 10−4

III scenario 0.5 · 10−5 10−14 0.6 · 10−3

▶ Diffusivity: this constant indicates how significant the diffusion
is. The greater the alpha, the more the heat spreads.

▶ Permeability: is the ability of underground rocks to allow fluid
to pass through.

▶ Viscosity: in a fluid are defined as those resulting from the
relative velocity of different fluid particles.
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Discretization: Explicit vs Implicit

We implemented two types of discretization for time dependance:

Equations (Forward Euler)

T n+1 − T n

τ
+ u∇T n − α∆T n = 0

Equations (Backward Euler)

T n+1 − T n

τ
+ u∇T n+1 − α∆T n+1 = 0

Where T n is T evaluate at time t0 + n · dt.
The explicit method is easy to implement but has significant
restrictions on temporal stepsize.
On the other hand, the implicit one is more robust but requires
solving a linear system for each iteration.
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Discretization: Advection term

1. Central Finite Difference, is a second-order method, but is
affected by oscillation.

2. Upwind scheme, is a first-order method but more stable.

Equations

u · ∇T = u1
(
∂xT

)
+ u2

(
∂yT

)
1. ∂xT =

Ti+1,j − Ti−1,j

2 dx
+ o(||dx ||2)

2. ∂xT =

{
Ti+1,j−Ti,j

dx if u1 < 0
Ti−1,j−Ti,j

dx if u1 > 0
+ o(||dx ||)

Where Tij = T (xi , yj , t̄) and t̄ is fixed. We can use central
differences when the Péclet condition is satisfied: u1dx < 2α.
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Discretization: Diffusion Terms

We used a second-order scheme in space. For the Laplace
operator we used classical Central finite difference:

α∆T = α
(Ti+1,j − 2Ti ,j + Ti−1,j

dx2 +
Ti ,j+1 − 2Ti ,j + Ti ,j−1

dy2

)
+ o(||(dx , dy)||2)

for Neumann boundary condition we used one-sided finite difference

−3Tij + 4Tij+1 − Tij+2

2dy
= gn̂

where gn̂ is the normal component on the boundary.
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Discretization: Darcy law

Since ν and µ are constant, the Darcy law and the conservation of
mass read

div(−ν

µ
∇p) = −ν

µ
div(∇p) = 0 ⇒ ∆p = 0

the discretization is similar to the Laplacian of Temperature.
Moreover, we can approximate the velocity vector field u using the
central finite difference

u1 = −ν

µ

(
pi+1j − pi−1j

2dx

)
u2 = −ν

µ

(
pij+1 − pij−1

2dy

)
The velocity does not depend on time; it is a stationary flow. We
solve these equations only once and then solve the heat equation.
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Numerical results: III scenario after 90 days
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Numerical results: Evolution

Figure: From left to right: Temperature after 30, 60, 90 days
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Numerical results: Animated Evolution

ECMI Mattu Riccardo Marini Fabio June 28, 2024 14/18



Numerical result: Central F.D. vs Upwind
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Conclusions and Future works

Conclusions
▶ dx ̸= dy

▶ Upwind vs Central Finite Difference
▶ spreading of heat fluid
▶ range of depth

Future works
▶ µ = µ(T (x))
▶ ν = ν(x)
▶ II order time (ex. Cranck Nicolson)
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Thanks for your attention!
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