Symmetric Encryption The myth of perfect security

Credits to our artist Ella

Presenters: Longde Huang Luc Steenbakkers **Group Members:** Catarina P. Loureiro Diogo Pereira Ella Salo Magdalena Mikic Isa Lamers Isabella Salvaggio Ivan Vukovic

Contents

- Symmetric Encryption
- Example: Substitution Cipher
- Security Properties
- Example: One-Time Pad
- Shannon's Theorem
- Imperfect Correctness and Our Project

Symmetric Encryption

Key space $\mathcal K$ Message space $\mathcal M$ Ciphertext space $\mathcal C$

Definition

A Symmetric Encryption (SE) algorithm is a tuple (KeyGen, Enc, Dec) with

 $\texttt{KeyGen}: (\cdot) \longrightarrow \mathcal{K}$

 $\mathtt{Enc}:\mathcal{K}\times\mathcal{M}\quad\to\mathcal{C}$

 $\mathtt{Dec}:\mathcal{K}\times\mathcal{C}\longrightarrow\mathcal{M}$

Both sender and receiver have the same key

Substitution Cipher

Example

$$\begin{split} \mathcal{K} &= S_{26} \\ \mathcal{M} &= \{A,B,\ldots,Z\}^n \\ \mathcal{C} &= \{A,B,\ldots,Z\}^n \end{split}$$

Substitution Cipher

Example

$$\mathcal{K} = S_{26}$$

$$\mathcal{M} = \{A, B, \dots, Z\}^n$$

$$\mathcal{C} = \{A, B, \dots, Z\}^n$$

If we take

k = "shift by three to the right"

m = ELEPHANT

Enc	with	k
Α	\rightarrow	D
В	\rightarrow	Ε
C	\rightarrow	F
:		:
W	\rightarrow	Z
Χ	\rightarrow	Α
Υ	\rightarrow	В
Z	\rightarrow	C

Substitution Cipher

Example

$$\mathcal{K} = S_{26}$$

$$\mathcal{M} = \{A, B, \dots, Z\}^n$$

$$\mathcal{C} = \{A, B, \dots, Z\}^n$$

If we take

k = "shift by three to the right"

m = ELEPHANT

c = HOHSKDQW

We call this shifting a Caesar Cipher, which is a substitution cipher since $k \in S_{26}$

Enc	with	k
Α	\rightarrow	D
В	\rightarrow	Ε
C	\rightarrow	F
:		:
W	\rightarrow	Z
Χ	\rightarrow	Α
Υ	\rightarrow	В
Z	\rightarrow	C

Security Properties

Definition (Correctness)

Let SE = (KeyGen, Enc, Dec) be a symmetric encryption scheme with message space \mathcal{M} , ciphertext space \mathcal{C} and key space \mathcal{K} . We say that SE is (perfectly) correct if

$$\forall m \in \mathcal{M}, \forall k \in \mathcal{K}, \quad \mathbb{P}[\mathrm{Dec}_k(\mathrm{Enc}_k(m)) = m] = 1.$$

Security Properties

Definition (Correctness)

Let SE = (KeyGen, Enc, Dec) be a symmetric encryption scheme with message space \mathcal{M} , ciphertext space \mathcal{C} and key space \mathcal{K} . We say that SE is (perfectly) correct if

$$\forall m \in \mathcal{M}, \forall k \in \mathcal{K}, \quad \mathbb{P}[\mathrm{Dec}_k(\mathrm{Enc}_k(m)) = m] = 1.$$

Definition (Perfect Security)

The scheme SE= (KeyGen, Enc, Dec) is perfectly secure iff $\forall m_1, m_2 \in \mathcal{M}$, $\forall c \in \mathcal{C}$,

$$\mathbb{P}(\operatorname{Enc}_k(m_1)=c)=\mathbb{P}(\operatorname{Enc}_k(m_2)=c)$$
 taken over all $k\in\mathcal{K}$

Security properties of the Substitution Cipher

Example (Correctness)

Take any $k \in \mathcal{K} = S_{26}$. Since permutations are always invertible, decryption is just applying k^{-1} . Therefore,

$$\forall m \in \mathcal{M}, \forall k \in \mathcal{K}, \quad \mathbb{P}[\mathrm{Dec}_k(\mathrm{Enc}_k(m)) = m] = 1$$

Security properties of the Substitution Cipher

Example (Correctness)

Take any $k \in \mathcal{K} = S_{26}$. Since permutations are always invertible, decryption is just applying k^{-1} . Therefore,

$$\forall m \in \mathcal{M}, \forall k \in \mathcal{K}, \quad \mathbb{P}[\mathtt{Dec}_k(\mathtt{Enc}_k(m)) = m] = 1$$

Example (Security)

Consider the messages $m_1 = FUN$ and $m_2 = LOL$. Now imagine that we see the ciphertext c = QRS. Then

$$\mathbb{P}(\operatorname{Enc}(k,m_1)=c)>0$$

$$\mathbb{P}(\operatorname{Enc}(k,m_2)=c)=0$$

Security properties of the Substitution Cipher

So this scheme is not perfectly secure!

Some Examples

Definition (XOR)

For
$$a, b \in \{0, 1\}^N$$
, $(a \oplus b)_i = \begin{cases} 1, & a_i \neq b_i \\ 0, & a_i = b_i \end{cases}$.

Or equivalently, $a \oplus b = (a + b) \mod 2 = (a + b)_{\mathbb{Z}_2^N}$

Example 1. (One-Time Pad)

Let
$$\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\},$$

 $\operatorname{Enc}_k(m) = k \oplus m$, $\operatorname{Dec}_k(c) = k \oplus c$

$$\mathbb{P}(\operatorname{Enc}_k(m)=c)=rac{1}{2}, \ orall m\in\mathcal{M}, c\in\mathcal{C}$$

Some Examples

Definition (XOR)

For
$$a, b \in \{0, 1\}^N$$
, $(a \oplus b)_i = \begin{cases} 1, & a_i \neq b_i \\ 0, & a_i = b_i \end{cases}$.

Or equivalently, $a \oplus b = (a + b) \mod 2 = (a + b)_{\mathbb{Z}_2^N}$

Example 1. (One-Time Pad)

Let
$$\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\},$$

 $\operatorname{Enc}_k(m) = k \oplus m$, $\operatorname{Dec}_k(c) = k \oplus c$

$$\mathbb{P}(\operatorname{Enc}_k(m) = c) = \frac{1}{2}, \ \forall m \in \mathcal{M}, c \in \mathcal{C}$$

$$|\mathcal{K}| = |\mathcal{M}|$$

Shannon's Theorem

Theorem

Let SE= (KeyGen, Enc, Dec) be a perfectly secure and correct encryption scheme, let $\mathcal M$ be the message space and $\mathcal K$ be the key space, then

$$|\mathcal{K}| \geq |\mathcal{M}|$$
.

Imperfect Correctness

Definition (Imperfect Correctness)

An SE is t-imperfectly correct if

$$\forall m \in \mathcal{M}, \mathbb{P}(\mathtt{Dec}_k \mathtt{Enc}_k(m) = m) \geq 2^{-t}.$$

We trade some accuracy for efficiency (by trying to make K small)

Assignments

Problem 1.

Devise a t-imperfectly correct scheme that achieves perfect security with $|\mathcal{K}| < |\mathcal{M}|$ when $t \ge 1$.

Problem 2.

(Bonus question) Prove that for any t-imperfectly correct scheme that achieves perfect security it must be the case that $|\mathcal{K}| \geq |\mathcal{M}| \cdot 2^{-t}$.

Problem 1.

Scheme 1

$$\mathcal{M} = \{0,1,2,3\}, \ \mathcal{K} = \{0,1\} = \mathcal{C}.$$

$$\operatorname{Enc}_k(m) = ((k+m) \mod 2)$$

$$\mathrm{Dec}_k(c) = ((k+c) \mod 2) + 2k$$

$$\Rightarrow \operatorname{Dec}_k \operatorname{Enc}_k(m) = (m \mod 2) + 2k$$

$$\Rightarrow \mathbb{P}(\operatorname{Enc}_{\mathcal{K}}(m) = c) = \frac{1}{2},$$

$$\mathbb{P}(\mathrm{Dec}_K\mathrm{Enc}_K(m)=m)=rac{1}{2},$$

$$\forall m \in \mathcal{M}, c \in \mathcal{C}.$$

Table of Encryption-Decryption

k	m	\rightarrow	С	\rightarrow	m
0	0		0		0
0	1		1		1
0	2		0		0
0	3		1		1
1	0		1		2
1	1		0		3
1	2		1		2
1	3		0		3

Kiitos - Dankjewel - Tack - Dankeschön - Thank you - Grazie - Obrigado

Hvala - Благодаря ти - Дякую - Tusen takk - Gracias - Merci - Köszönöm