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What are Semiconductors?

Materials with electrical conductivity between conductors and insulators.

Conduct electricity under certain conditions.

Essential for controlling electrical current.
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Types of Semiconductors
Intrinsic semiconductors

Pure semiconductors.
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Types of Semiconductors
Extrinsic semiconductors

Doped with impurities.

N-type:
1 Mostly because of electrons.

2 Absolutely unchanged.

3 I = Ih and nh ≫ ne .

P type:
1 Mainly because of the holes.

2 Entirely neutral.

3 I = Ih and nh ≫ ne .
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Applications
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Transistors
What they are and their use

A MOSFET (Metal-Oxide-Semicondutor Field-Effect transistor) is a
device which consistes of four terminals: Source (S), Drain (D),
Gate (G) and Bulk (B). The transistor is a symmetrical structure
and source and drain are interchangeable.

Figura: Simple view of a MOSFET design
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Transistors

The source,the drain and the polysilicon (gate) terminals are
heavily-doped regions and the Silicon dioxide (Si02) insulates the
gate from the substrate.

Transistor operate as switches and when they are turned on, the
current flows from the Source to the Drain in p-channel transistors
and from Drain to Source in n-channel ones. However, carriers
always travel from the source to the drain.

Figura: NMOS and PSON devices in CMOS technologies.
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PDE associated with the transistor device

We want to model the transport of the electron carriers in our
transistor (NMOS) with a drift-diffusion PDE for the electron
density n(x , t) coupled with the Poisson equation for the electrical
potential ϕ(x) with x ∈ Ω.{

∂n
∂t −

1
e∇ · Jn = 0

−∆ϕ+ e(n − ND) = 0

with Jn = eµn(UT∇n − n∇ψ).

n(x , t) is the electron density at time t ≥ 0 and x ∈ Ω, e the
electric charge, µn the electron mobility, UT the thermal voltage,
ND the doping concentration, J the electric current and ϕ(x) the
electrical potential in x ∈ Ω.
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Finite differences

We discretized the presented equations, coupled with Dirichlet
boundary conditions, using finite differences:


nk+1
i −nki
∆t − 1

e

J
i+ 1

2
−J

i− 1
2

∆x = 0 Continuity equation

J1+ 1
2
= eµn

(
UT

nki+1−nki
∆x − nk

i+ 1
2

ϕk
i+1−ϕk

i

∆x

)
Current equation

ϕk
i+1−2ϕk

i +ϕk
i−1

2 = e
ε

(
nki − ND

)
Poisson equation

where we assumed the mobility µn,i ≈ µ(Ei ) =
µ0√

1+
(

µ0|Ei |
VS

)2
.
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Scharfetter-Gummel

To get better results we also implemented the Scharfetter-Gummel
method, which has an higher order of accuracy.

To do so we introduced the slotboom variable
S(x) = n exp

(
−ϕ(x)
UT

)
, which derived, gives an expression for the

current.

Integrating that in the interval [xi , xi+1] we obtain the following
discretization

Ji+ 1
2
= e

µi+ 1
2

h
σi+ 1

2

[
(ni+1 − ni ) coth

(
σi+1

UT

)
− (ni+1 + ni )

]
Remark: In each interval [xi , xi+1] we suppose that u(x) and J(x)
are constants while we approximate ψ(x) with a piecewise linear
function:

ψ(x) ≈ ψi +
x − xi
δx

(ψi+1 − ψi )
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Numerical results
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Numerical results
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Numerical results: 1D case
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Thank you for your
attention!
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